

ELSEVIER Thermochimica Acta 253 (1995) 33-39

thermochimica acta

Investigation of the thermodynamic properties of γ -Al₂O₃^{$\dot{\alpha}$}

Chen Qiyuan ^{a,*}, Zeng Wenming ^a, Chen Xinmin ^a, Gu Songqing ^b, Yang Guanqun^b, Zhou Huifang^b, Yin Zhonglin^b

' Department of Chemistry, Centrul-South Uniorrsity of' Technology, Changsha, Hunan 410083, People's Republic of China

^b Zhengzhou Research Institute of Light Metals, Zhengzhou, Henan, People's Republic of China

Received 5 July 1994: accepted 7 July 1994

Abstract

The heat capacities of γ -Al₂O₃ were measured from 50 to 700^oC using an HT1000 calorimeter. The heat of transformation γ -Al₂O₃ to α -Al₂O₃ was directly measured using an HTISOO calorimeter. Combination of these results with the values from the literature led to $\Delta_f H_m^{\phi} = -(1657.2 \pm 1.5)$ kJ mol⁻¹, $S_m^{\phi} = (52.30 \pm 2.00)$ J mol⁻¹ K⁻¹ and $\Delta_f G_m^{\phi} =$ $-(1564.2 \pm 2.0)$ kJ mol⁻¹.

Keywords: Alumina; DTA; TG; Thermodynamics

1. Introduction

 γ -Al₂O₃ is an important intermediate during the calcining of aluminium hydroxide in the final technological stage of the industrial production of aluminium oxide. At the temperatures above 1200°C, γ -Al₂O₃ is transformed to α -Al₂O₃ [1]. γ -Al₂O₃ is also an important chemical product as the carrier of catalyst and adsorbent [2]. Therefore, it is necessary to investigate the thermodynamic properties of γ -Al₂O₃,

0040-6031/95/\$09.50 \odot 1995 - Elsevier Science B.V. All rights reserved SSDI 0040-6031(94)01969-X

^{*} Corresponding author.

^{*} Presented at the International and III Sino-Japanese Symposium on Thermal Measurements, Xi'an. 4-6 June 1994.

which are useful for the understanding of the mechanism of transformation of γ -Al₂O₃ to α -Al₂O₃ and for the further application of γ -Al₂O₃. To date, the measurement of the heat capacities of γ -Al₂O₃ has not been reported [3]. The standard enthalpy of formation of γ -Al₂O₃ has only been determined on the basis of the heat of transformation from γ -Al₂O₃ to α -Al₂O₃ measured indirectly by Yokokawa and Kleppa [4] at 705°C by solution calorimetry. In the present work, the heat capacities of γ -Al₂O₃ have been measured between 50 and 705[°]C by the drop method with an HTlOOO high temperature calorimeter and the heat of transformation of γ -Al₂O₃ has been measured directly in an HT1500 very high temperature calorimeter. Combining the data with the standard enthalpy of formation of α -Al₂O₃, the standard enthalpy of formation of γ -Al₂O₃ has been calculated. The standard free energy of formation of γ -Al₂O₃ has also been computed, based on the recommended value of the standard entropy of γ -Al₂O₃ [5].

2. **Experimental**

2.1. Samples

The samples of γ -Al₂O₃ for determination were prepared from pure synthetic diaspore powder. Diaspore powder was calcined at 550°C for 10 h and then cooled to room temperature. A TG-DTA analysis made with a TSAlOO thermal analyser (Rigaku, Japan) and an XRD analysis carried out with a D500 X-ray diffraction analyser (Siemens, Germany) showed that the samples were pure γ -Al₂O₃. The results of elemental spectral analysis are shown in Table 1. The particle size of samples ranged from 0.5 to 20 μ m, with average of 6.59 μ m.

Table I Results of the spectral analysis of γ -Al₂O₃ in %

Cu	0.0012	Mg	0.0011	Bi	< 0.001	Si	< 0.001	
Ca	0.012	Gа	0.0026	Ni	< 0.001	Ti	${}_{0.001}$	
Sn	${}_{0.001}$	Sb	${}_{0.001}$	Mn	${}_{0.001}$	Fe	0.010	

2.2. *Determination of the heat capacities of y-Al,O,*

A Calvet-Tian high temperature microcalorimeter HTlOOO (Setaram, France), was used for the determination of the heat capacities of γ -Al₂O₃. Before experiments, the sensitivity and temperature scales of the calorimeter were calibrated carefully. An enthalpy determination for standad material α -Al₂O₃ was made using the "drop" method in this calorimeter. The results are shown in Table 2. Putting the mean values into the equation [6]

$$
\Delta H = a(T - T_0) + b(T^2 - T_0^2) + c[(1/T) - (1/T_0)] \tag{1}
$$

gives the parameters as $a = 108.02$, $b = 10.37 \times 10^{-3}$ and $c = 30.71 \times 10^{5}$. The results of calculations with Eq. (1) are shown in the sixth column of Table 2 and it can be seen that they are very close to the values from Ditmars et al. [7] (see the seventh column of Table 2). The concord between the experimental results from two runs at the same temperature and the good agreement between our results and the values from Ditmars et al. [7] show the good reproducibility and accuracy of this calormetric determination.

 γ -Al₂O₃ powder was pressed into pellets and was kept in a desiccator prior to determinations. A small amount of corundum powder was put on the bottom of both the sample cell and the reference cell. The calorimeter was heated to the temperature required for determination and kept constant. After the baseline reached a stable state, a sample of known mass of γ -Al₂O₃ was dropped into the sample cell. The calorimetric signals were collected and processed by an IBM PC-XT286 computer. The results of 16 runs are listed in Table 3.

Putting the average values of ΔH into Eq. (1) gives the following expression for the enthalpy of γ -Al₂O₃

Table 2 Experimental results of the enthalpy of α -AI₂O₃^a using the "drop" method with an HT1000 calorimeter

^a Molar mass is 101.9613 g mol⁻¹.

Mass/mg	$T_{\rm e}/K$	T/K	$\Delta H/$ $(J \text{ mol}^{-1})$	AH (mean value)/ $(J \text{ mol}^{-1})$	$C_{\rho,m}/$ $(J \text{ mol}^{-1} \text{ K}^{-1})$
330.186	288.75	321.45	2774.43	2771.85 ± 2.58	88.81
264.222	288.75	321.45	2769.27		
280.298	289.45	374.15	7663.68	$7666.40 + 2.72$	98.41
218.770	289.45	374.15	7669.12		
218.154	291.85	477.95	18339.07	$18335.90 + 3.17$	109.78
262.980	291.85	477.95	18332.73		
161.190	291.35	582.15	30192.69	$30197.60 + 4.91$	116.64
201.941	291.35	582.15	30202.51		
263.003	293.65	685.55	42338.67	$42333.04 + 5.63$	121.44
279.697	293.65	685.55	42327.41		
169.004	294.15	788.55	54993.80	$54999.64 + 5.84$	125.21
73.250	294.15	788.55	55005.48		
40.177	293.65	890.45	67972.61	$67966.42 + 6.13$	128.38
76.473	293.65	890.45	67960.35		
42.165	293.15	992.85	81291.29	$81297.64 + 6.35$	131.21
31.927	293.15	992.85	81303.99		

Table 3 Heat capacities of γ -Al₂O₃^a determined usins an HT1000 calorimeter

 $^{\circ}$ Molar mass is 101.9613 g mol⁻¹.

$$
\Delta H = 115.25(T - T_0) + 9.765 \times 10^{-3} (T^2 - T_0^2)
$$

+ 33.81 \times 10^{-5} [(1/T) - (1/T_0)] \t(2)

Therefore, the relationship between the heat capacity of γ -Al₂O₃ and temperature could be expressed as

$$
C_p = 115.25 + 19.53 \times 10^{-3} T - 33.81 \times 10^{5} T^{-2}
$$

in the range 298.15–1000 K. (3)

The heat capacities calculated using Eq. (3) are shown in the sixth column of Table 3. The heat capacity of γ -Al₂O₃ is 4.98% larger than that of α -Al₂O₃ at 101.0 \degree C, 4.45% larger at 412.4 \degree C and 5.92% larger at 719.7 \degree C. Chase et al. [5] estimated according to the results of Marchidan et al. [8] that the heat capacities of γ -Al₂O₃ between 730 and 940°C are 4.7% larger than those of α -Al₂O₃. Their estimated values are very close to our results, but the deviations become appreciable at higher temperatures.

2.3. Determination of the enthalpy of transformation from γ - Al_2O_3 to α - Al_2O_3

An HT 1500 very high temperature calorimeter (Setaram, France) was used to determine the enthalpy of transformation from γ -Al₂O₃ to α -Al₂O₃. Before determi-

Substance	$\theta_{\rm fus}/^{\circ}{\rm C}$	$\Delta H_{\rm exp}/$ $(kJ \text{ mol}^{-1})$	ΔH (mean value)/ $(kJ \text{ mol}^{-1})$	$\Delta H/$ $(kJ \text{ mol}^{-1})$ [9]
Au	1064.47	12.61	$12.59 + 0.078$	12.55
	1064.32	12.50		
	1064.31	12.65		
Ag	962.08	11.36	11.26 ± 0.083	11.30
	961.98	11.20		
	962.25	11.24		
NaCl	801.25	28.28	$28.28 + 0.065$	28.16
	801.28	28.21		
	801.75	28.34		
Al	661.17	10.72	$10.68 + 0.047$	10.7
	660.74	10.63		
	660.74	10.70		

Table 4 Results of the determinations of the melting enthaplies of Au, Ag, NaCl and Al

Table 5

Measured heats of transformation from γ -Al₂O₃ to α -Al₂O₃

^a Average value of the start temperature and the end temperature of peak.

nation, the sensitivity and temperature scale were calibrated carefully. The accuracy of the calorimeter was checked by determining the melting enthaplies of metallic gold, silver, aluminium and sodium hydroxide; comparison of these results (see Table 4) with the values in the literature [9] confirmed the reliability of our calorimeter.

The sample cell of calorimeter HT1500 was filled with corundum powder. Then the γ -A1₂O₃ sample was put onto the corundum powder. The reference cell was also filled with corundum powder. After the baseline of the heat flow curve reached a stable state, sample and reference cells were heated simultaneously at a rate of 5°C min^{-1} . The signals were collected and processed by a personal computer. An XRD analysis on the material produced indicated that all the γ -Al₂O₃ sample had been transformed to α -Al₂O₃. The results of three determination runs are listed in Table 5; these are in good agreement with each other.

3. Discussion

Combining the heat capacity values of α -Al₂O₃ [10] and γ -Al₂O₃ obtained above gives an expression for the relationship between temperature and ΔC_p for the reaction

$$
\gamma - Al_2O_3(\text{cr}) = \alpha - Al_2O_3(\text{cr})
$$
\n(4)

as

$$
\Delta C_p = 0.13 - 7.19 \times 10^{-3} T - 3.15 \times 10^5 T^{-2}
$$
 (5)

Using Eq. (5), the heat of transformation obtained above was calibrated to room temperature. Then, by combining this value with the standard enthalpy of formation of α -Al₂O₃, we obtained the standard enthalpy of γ -Al₂O₃ at 25^oC as $-(1657.1 \pm 1.5) \text{ kJ} \text{ mol}^{-1}$.

Yokokawa and Kleppa [4] indirectly measured the heat of transformation from γ -Al₂O₃ to α -Al₂O₃ at 978 K as -22.18 kJ mol⁻¹. Calibrating to room temperature with Eq. (5) gives the value -18.41 kJ mol⁻¹. Therefore, the standard enthalpy of formation of γ -Al₂O₃ from Yokokawa and Kleppa's value is -1657.3 kJ mol⁻¹, which is only 0.23 kJ mol⁻¹ higher than our result (see Table 6). Therefore the average of the values from Yokokawa and Kleppa [4] and ourselves $(- (1657.2 \pm 1.5) \text{ kJ} \text{ mol}^{-1})$ is recommended as the standard enthalpy of formation of γ -Al₂O₃.

Because of the lack of experimental data for the low temperature heat capacity of γ -Al₂O₃, there are no experimental data for the standard entropy of γ -Al₂O₃ to be found in the literature. Chase et al. [5] suggested the value (52.30 \pm 2.00) J mol⁻¹ K^{-1} as the standard entropy of γ -Al₂O₃ at 25°C, based on the statistical mechanical analysis of the construction of γ -Al₂O₃.

Combining the standard enthalpy of formation obtained above and the standard entropy suggested by Chase et al. [5] with the standard entropies of $Al(cr)$ and $O_2(g)$ [11], we obtain $-(1564.2 \pm 2.0)$ kJ mol⁻¹ for the standard free energy of formation of γ -Al₂O₃.

Acknowledgement

This project was supported by the National Fund for Doctoral Program of China.

References

Table 6

[1] T. Sato, Thermochim. Acta, 88 (1985) 69.

Standard enthalpy of formation of γ -Al₂O₃

[2] B.C. Lippens and J.J. Steggerda, Physical and Chemical Aspects of Adsorbents and Catalysts, Academic Press, New York, 1970, p. 171.

- *[3]* J.A. Apps and J.M. Neil, ACS Symp. Ser. 416, Washington DC, 1990, p. 415.
- [4] T. Yokokawa and O.J. Kleppa, J. Phys. Chem., 68 (1964) 3246.
- [5] M.W. Chase, Jr., J.L. Curnutt, R.A. McDonald and A.N. Syverud, J. Phys. Chem. Ref. Data, 7 (1978) 838.
- [6] J.P. McCullough and D.W. Scott, Experimental Thermodynamics, Vol. I, Calorimetry of Non-Reacting Systems, Butterworths, London, 1968, p, 327.
- [7] P.A. Ditmars, S. Ishihara, S.S. Chang and G. Bernstein, J. Res, Natl. Bur. Stand., 87 (1982) 159.
- [8] D.I. Marchidan, L. Pandele and A. Nicolescu, Rev. Roum. Chim., I7 (1972) 1493.
- [9] W.J. Borer and H.H. Gunthard, Helv. Chim. Acta, 53 (1970) 1043.
- [IO] W. Zeng, Dissertation, Central-South University of Technology, China, 1993.
- [11] J.D. Cox, D.D. Wagman and V.A. Medevedev, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corporation, New York, 1989.